All the information on Cadmium

(a) Plastics

Most cadmium pigments are used in plastics. These pigments disperse well in most polymers to give good colouring and high opacity and tinting strength. The pigments are insoluble in organic solvents, have good resistance to alkalis and in most cases will remain colour fast for the life of the plastic. As a result, cadmium pigments have been used in a wide range of plastic products. Nowadays, their greatest application is in complex polymers which are processed at higher temperatures and require the unique durability and technical performance of a cadmium pigment. Their use is almost mandatory in many nylon, acrylonitrile butadiene styrene (ABS), polycarbonates, high density polyethylene, silicone resins and other modern thermoplastic polymers processed at high temperatures which preclude the use of organic pigments and also most alternative inorganic pigments in the range of hues provided by cadmium. Cadmium pigmented engineering polymers such as ABS are widely used in products which include telephones, gas pipes and fittings, electricity cables, beverage crates and motor vehicle radiator fans. Pigments are usually incorporated in plastics in proportions of 0.01 to 0.75 per cent by weight.

(b) Specialist and industrial paints

Bright cadmium yellows, oranges and reds are major pigments for artists’ colours where their permanence and opacity are the accepted standards against which other pigments are judged.

Cadmium yellows and reds can have service temperatures well above 300 C and are used in coatings for process chemical and steam pipes. They can also be incorporated in latex and acrylic coatings.

Cadmium pigments are usually incorporated in these paints in proportions of 10 to 15 per cent by weight.

(c) Ceramics and glasses

The unique abilities of highly stable cadmium pigments to withstand high processing and service temperatures make them the only choice in much of their colour range for glasses, ceramic glazes and vitreous and porcelain enamels. In transparent glasses the cadmium pigment particles are colloidally dispersed to produce the colours by selective absorption and scattering. The addition of 0.5 percent by weight of cadmium pigment produces bright transparent glasses with colour ranging from intense yellow through to ruby red depending upon the composition.

The bright colours of cadmium pigments are ideally suited to ceramics, vitreous enamels for glass and porcelain enamels for iron and steel domestic products.

(d) Miscellaneous uses

Cadmium pigments have a number of other minor uses in rubber, paper and inks although these are small in terms of cadmium consumption.

This article comes from cadmium edit released